

电位滴定法测定基础油的酸值含量测定

一、前言

基础油是从植物的种子、花朵、根茎或果实中萃取的非挥发性油脂,常见的有荷荷巴油、甜杏仁油、葡萄籽油、玫瑰果油、橄榄油等。很多基础油本身就具有医疗的效果,是营养和精力的良好来源。但是刺激性十分强烈,直接擦在皮肤上,会造成伤害。因此使用前,一定要检测基础油的品质。本实验参照《ASTM 664 》使用 T960 全自动滴定仪对基础油中酸值含量进行测定。

二、仪器与试剂

2.1、仪器

T960 全自动电位滴定仪, 非水 PH 复合电极, 10mL 滴定管, 分析天平等。

2.2、试剂

氢氧化钾-异丙醇标准溶液滴定液(0.1mol/L),甲苯,异丙醇,纯化水。

三、实验方法

3.1、实验过程

称取约 5g 样品(根据酸值含量确定取样量),精确到 0.0001g,置于 100mL 滴定杯中中,加入 50mL 溶剂(5mL 去离子水+495mL 异丙醇+500mL 甲苯混合液),将电极浸入溶液中,开启搅拌,搅拌均匀后,启动编辑好的方法,点击开始滴定,用标定的氢氧化钾-异丙醇标准溶液滴定样品,滴定至电位突跃终点,记下终点体积。同时做空白试验。

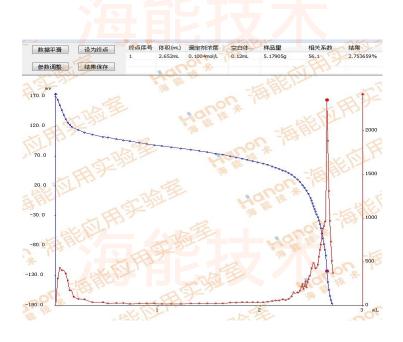
3.3、仪器参数

T960 全自动滴定仪参数设置如表1所示:

表1滴定仪参数设置

滴定模式:	动态滴定	最小添加体积	0. 02mL	
电极平衡时间:	4s	预搅拌时间:	10s	
电极平衡电位:	1mv	滴定速度:	标准	

滴定前平衡电位:	6mv	预滴定后搅拌时间:	5s	
结束体积:	20mL	预滴定添加体积	OmL	
电位突跃量:	150	预控 mv 值:	-120mv	


4.1、实验结果

样品经测试,得到实验结果如表 2 所示:

表 2 酸值含量测试结果

样品	c (KOH-异丙	取样量	滴定体积	空白值	酸值	平均含量	RSD (%)
名称	醇) (mol/L)	(g)	(mL)	(mL)	(mg/g)	(mg/g)	
基础 0.1004 油	5. 17905	2. 654	0. 120	2. 756	2. 891	4. 355	
	6. 20660	3. 330		2. 913			
		5. 93560	3. 287		3. 005		

4.2、滴定图谱

4.3、结论

T960 全自动电位滴定仪用电位滴定法测定基础油的总酸值,能够满足该产品的测定需求,而且具有数据重复性良好,结果准确,避免指示剂在样品在颜色深的溶液中不容易观察,影响终点判断的弊端,能够

准确判断滴定终点。

海能技术

注意事项:

- 1) 对于酸值含量小于 1mg/gKOH 以下的样品,取样量建议在 20g 左右,由于样品较少,该实验方案仅供参考。
 - 2) 在测试完成后,建议使用配置好的溶剂清洗电极,防止油样儿堵塞电极的离子交换孔。

参考文献:

[1] ASTM 664-9a Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration. [S]

海能技术

海能技术