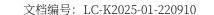


乳粉中抗坏血酸的含量测定 高效液相色谱法


参考标准: GB 5009.86-2016 (第一法)

一、摘要

本文使用 Wooking K2025 高效液相色谱仪测定乳粉中抗坏血酸的含量。色谱条件: C_{18} 色谱柱(4.6×250 mm, 5μ m),流速为 0.7 mL/min,柱温为 $25 \,^{\circ}$ C,进样量为 20μ L,检测器为紫外-可见光检测器,检测波长为 245 nm。实验结果: L(+)-抗坏血酸的理论塔板数为 10816,D(-)-抗坏血酸的理论塔板数为 11070,L(+)-抗坏血酸和 D(-)-抗坏血酸的分离度为 1.83;重复性测试中,抗坏血酸混合标准溶液连续进样 7 针,L(+)-抗坏血酸保留时间的 RSD 为 0.203%,峰面积的 RSD 为 0.501%; D(-)-抗坏血酸保留时间的 RSD 为 0.203%,峰面积的 RSD 为 0.501%; D(-)-抗坏血酸保留时间的 RSD 为 0.049μ g/mL; D(-)-抗坏血酸的仪器检出限为 0.015μ g/mL,仪器定量限为 0.049μ g/mL; D(-)-抗坏血酸的仪器检出限为 0.017μ g/mL,仪器定量限为 0.056μ g/mL; L(+)-抗坏血酸和 D(-)-抗坏血酸在测定浓度范围内均呈现良好的线性关系,确定系数 R^2 均在 0.999 以上;对乳粉试样进行测定,L(+)-抗坏血酸的含量为 61 mg/100 g,D(-)-抗坏血酸未检出,L(+)-抗坏血酸总量为 59 mg/100 g,抗坏血酸的加标回收率范围为 75.2 %~81.2%。因此,Wooking K2025 高效液相色谱仪满足《GB 500 9.86-2016 食品安全国家标准 食品中抗坏血酸的测定(第一法)》乳粉中抗坏血酸含量测定的需求。

二、背景

抗坏血酸可分为 L(+)-抗坏血酸和 D(-)-抗坏血酸。L(+)-抗坏血酸,又称为维生

素 C,是一种天然存在的具有抗氧化性质的有机化合物,也是一种维持人体正常活动不可缺少的营养物质。D(-)-抗坏血酸常作为抗氧化剂、防腐剂、发色助剂用于食品工业,但摄入过多也会使白细胞的抗病能力明显下降,会引起尿酸结石、腹泻、多尿及皮疹等。因此,分离并同时测定乳粉中 L(+)-抗坏血酸和 D(-)-抗坏血酸具有重要意义。

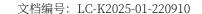
三、实验过程

1 范围

适用于乳粉中抗坏血酸的含量测定。

2 原理

试样中的抗坏血酸用偏磷酸溶解、超声提取后,以磷酸盐为流动相,经反相色谱柱分离,其中 L (+)-抗坏血酸和 D (-)-抗坏血酸直接用配有紫外检测器的液相色谱仪(波长 245nm)测定;试样中的 L (+)-脱氢抗坏血酸经 L-半胱氨酸溶液进行还原后,用紫外检测器(波长 245nm)测定 L (+)-抗坏血酸总量,或减去原样品中测得的 L (+)-抗坏血酸含量而获得 L (+)-脱氢抗坏血酸的含量。以色谱峰的保留时间定性,外标法定量。

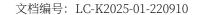

3 试剂与材料

- 3.1 水: 符合 GB/T 6682 的一级水;
- 3.2 偏磷酸 (HPO₃) n: 含量 (以 HPO₃计) ≥38%;
- 3.3 偏磷酸溶液(200g/L): 称取 200g(精确至 0.1g)偏磷酸(3.2),溶于水并稀释至 1L;

2

^{*}本报告仅供委托方进行科研、产品研发之目的使用。

^{*}本报告有关的检测数据、结果不具有向委托方之外的任何主体、社会公众的证明、验证作用。



- 3.4 偏磷酸溶液(20g/L): 量取 50mL 200g/L 偏磷酸溶液(3.3), 用水稀释至 500mL;
- 3.5 磷酸三钠(Na₃PO₄·12H₂O);
- 3.6 偏磷酸三钠溶液(100g/L): 称取 100g(精确至 0.1g)磷酸三钠(3.5),溶于水并稀释至 1L;
- 3.7 磷酸二氢钾(KH₂PO₄): 分析纯;
- 3.8 磷酸(H₃PO₄):色谱纯;
- 3.9 L-半胱氨酸(C₃H₇NO₂S):分析纯;
- 3.10 L-半胱氨酸溶液(40g/L): 称取 4g L-半胱氨酸(3.9), 溶于水并稀释至100mL;
- 3.11 甲醇(CH₃OH):色谱纯;
- 3.12 L(+)-抗坏血酸标准品(C₆H₈O₆),纯度≥99%;
- 3.13 D(-)-抗坏血酸(异抗坏血酸)标准品(C₆H₈O₆),纯度≥99%;
- 3.14 L (+) -抗坏血酸标准储备液 (1.000 mg/mL): 准确称取适量 L (+) -抗坏血酸标准 品 (3.12), 用 20g/L 的偏磷酸溶液 (3.4) 稀释配制成浓度为 1.000 mg/mL 的 L (+) -抗坏血酸标准储备液;
- 3.15 D (-) -抗坏血酸标准储备液(1.000 mg/mL): 准确称取适量 D (-) -抗坏血酸标准品(3.13),用 20g/L 的偏磷酸溶液(3.4)稀释配制成浓度为 1.000 mg/mL 的 D (-) -抗坏血酸标准储备液:
- 3.16 抗坏血酸混合标准系列工作液: 分别移取一定量的 L(+)-抗坏血酸标准储备液(3.14) 和 D(-)-抗坏血酸标准储备液(3.15), 用 20g/L 的偏磷酸溶液(3.4) 稀释配制成浓度分别为 0μg/mL、0.5μg/mL、1.0μg/mL、5.0μg/mL、10.0μg/mL、25.0μg/mL、50.0μg/mL 的混合标准系列工作液;

³

^{*}本报告仅供委托方进行科研、产品研发之目的使用。

^{*}本报告有关的检测数据、结果不具有向委托方之外的任何主体、社会公众的证明、验证作用。

3.17 流动相: A: 6.8g 磷酸二氢钾(3.7),用水溶解并定容至 1L,用磷酸(3.8)调 pH 至 2.5~2.8;B: 100%甲醇。按 A:B=98:2 混合,过 0.45μm 滤膜,超声脱气。

4 仪器与设备

- 4.1 高效液相色谱仪: K2025 P2 二元高压输液泵、K2025 AS 自动进样器、K2025 CO 柱温箱、UVD 紫外-可见光检测器、Wookinglab 色谱工作站;
- 4.2 分析天平: 精确到 0.0001g;
- 4.3 超声波清洗机;
- 4.4 pH 计: 精度为 0.01;
- 4.5 离心机: 转速≥4000r/min;
- 4.6 真空抽滤装置;
- 4.7 塑料离心管: 50 mL, 材质为聚丙烯;
- 4.8 容量瓶: 10mL、50mL, 棕色带刻度;
- 4.9 烧杯: 50mL;
- 5.0 滤膜: 水相, 0.45μm。

5 测定步骤

整个检测过程尽可能在避光条件下进行。

5.1 试样溶液的制备

称取乳粉试样 2g(精确至 0.001g)于 50mL 烧杯(4.9)中,用 20g/L 的偏磷酸溶液 (3.4)将试样转移至 50mL 容量瓶中,振摇溶解并定容。摇匀,全部转移至 50mL 离心管

^{*}本报告仅供委托方进行科研、产品研发之目的使用。

^{*}本报告有关的检测数据、结果不具有向委托方之外的任何主体、社会公众的证明、验证作用。

中,超声提取 5min 后,于 4000r/min 离心 5min,取上清液过 $0.45\mu m$ 水相滤膜,滤液待测[由此试液可同时分别测定试样中 L (+) -抗坏血酸和 D (-) -异抗坏血酸的含量]。

5.2 试样溶液的还原

准确吸取 20mL 上述离心后的上清液(5.1)于 50mL 离心管中,加入 10mL 40g/L 的 L-半胱氨酸溶液(3.10),用 100g/L 的磷酸三钠溶液(3.6)调节 pH 至 7.0~7.2,以 200 次/min 振荡 5min。再用磷酸(3.8)调节 pH 至 2.5~2.8,用水将试液全部转移至 50mL 容量瓶中,并定容至刻度。混匀后取此试液过 0.45μm 水相滤膜后待测[由此试液可测定试样中包括脱氢型的 L(+)-抗坏血酸总量]。

5.3 色谱条件

- (a) 色谱柱: C₁₈色谱柱, 4.6×250mm, 5µm 或者相当的色谱柱;
- (b) 流动相: 详见 3.17;
- (c) 流速: 0.7 mL/min;
- (d) 进样量: 20 μL;
- (e) 柱温: 25°C;
- (f) 检测器及波长: 紫外-可见光检测器, 检测波长为 245nm。

6 实验结果

6.1 重复性测试

按照上述色谱条件(5.3)进行采集, 抗坏血酸混合标准工作液(浓度均为 1.0μg/mL)的色谱图如图 1 所示, 积分结果如表 1 所示。

⁵

^{*}本报告仅供委托方进行科研、产品研发之目的使用。

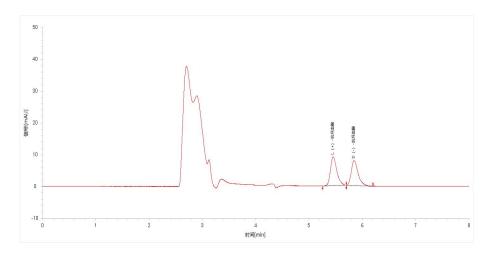


图 1 抗坏血酸混合标准溶液的色谱图

表 1 抗坏血酸混合标准溶液色谱图积分结果

	保留时间	峰面积	峰高	TH 3/0.457 +G **/r	分离度	对称/拖尾因子	
目标物	(min)	(mAU.s)	(mAU)	理论塔板数			
	5.463	33.331	4.053	10816	-	1.34	
D(-)-抗坏血酸	5.858	31.354	3.553	11070	1.83	1.28	

由表 1 中数据可知,L (+) -抗坏血酸的理论塔板数为 10816,D (-) -抗坏血酸的理论塔板数为 11070,L (+) -抗坏血酸和 D (-) -抗坏血酸的分离度为 1.83,可实现基线分离。

将抗坏血酸混合标准溶液连续进样7针,叠加的色谱图如图2所示,结果见表2。

^{*}本报告仅供委托方进行科研、产品研发之目的使用。

^{*}本报告有关的检测数据、结果不具有向委托方之外的任何主体、社会公众的证明、验证作用。

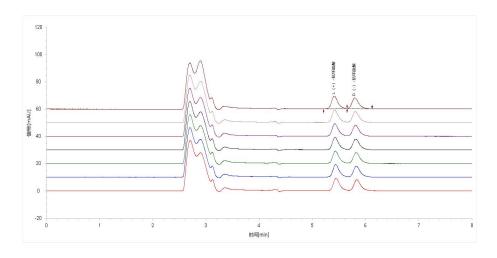


图 2 抗坏血酸混合标准溶液连续进样 7 针叠加的色谱图

表 2 抗坏血酸混合标准溶液连续进样 7 针重复性数据统计

目标物		1	2	3	4	5	6	7	平均值	RSD%
L (+) -	保留时间	5.448	5.438	5.435	5.430	5.425	5.422	5.415	5.430	0.203
抗坏血酸	峰面积	74.736	74.563	74.282	74.175	74.453	74.914	75.248	74.624	0.501
D (-) -	保留时间	5.838	5.832	5.827	5.820	5.815	5.812	5.800	5.821	0.222
抗坏血酸	峰面积	69.239	69.085	68.871	68.748	68.791	69.124	69.233	69.013	0.300

将混合标准溶液连续进样 7 针进行重复性测试, L(+)-抗坏血酸保留时间的 RSD 为 0.203%,峰面积的 RSD 为 0.501%; D(-)-抗坏血酸保留时间的 RSD 为 0.222%,峰面积的 RSD 为 0.300%。均具有良好的定性定量重复性。

6.2 仪器灵敏度测试

灵敏度测试的谱图如图 3 所示, 计算结果见表 3。

⁷

^{*}本报告仅供委托方进行科研、产品研发之目的使用。

^{*}本报告有关的检测数据、结果不具有向委托方之外的任何主体、社会公众的证明、验证作用。

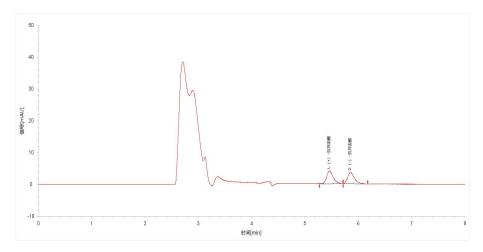


图 3 仪器灵敏度的色谱图

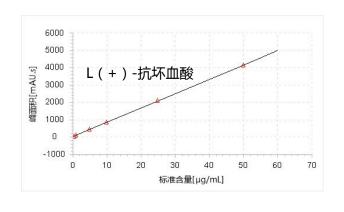
表 3 仪器灵敏度测试数据

FI t=#m	浓度	峰高	噪声(mAu)	S/N	LOD	LOQ
目标物	(μg/mL)	(mAU)	荣户 (IIIAu)		(μg/mL)	(μg/mL)
L (+) -抗坏血酸	0.5	4.053	0.040	101.3	0.015	0.049
D (-) -抗坏血酸	0.5	3.553	0.040	88.8	0.017	0.056

由表 3 中数据可知, L (+) -抗坏血酸的仪器检出限为 $0.015\mu g/mL$, 仪器定量限为 $0.049\mu g/mL$; D (-) -抗坏血酸的仪器检出限为 $0.017\mu g/mL$, 仪器定量限为 $0.056\mu g/mL$ 。

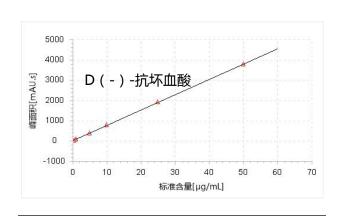
6.3 含量测定

6.3.1 校准曲线


按照色谱条件(5.3),将抗坏血酸标准系列工作液(3.16)上机测定,以浓度为横坐标,峰面积为纵坐标,绘制校准曲线,线性方程和确定系数如图 4~图 5 所示。由图 4~图 5 可知,L(+)-抗坏血酸和 D(-)-抗坏血酸在测定浓度范围内均呈现良好的线性关系,确

^{*}本报告仅供委托方进行科研、产品研发之目的使用。

^{*}本报告有关的检测数据、结果不具有向委托方之外的任何主体、社会公众的证明、验证作用。



定系数 R^2 均在 0.999 以上。抗坏血酸系列标准工作液叠加的色谱图如图 6 所示。

方程式 (L (+) -抗坏血酸) y=82.80604*x+3.41388 相关系数(R) 0.9999 确定系数(R²) 0.9999

图 4 L(+)-抗坏血酸的校准曲线

方程式 (D (-) -抗坏血酸) y=75.64816*x+3.64433 相关系数(R) 0.9999 确定系数(R²) 0.9999

图 5 D (-)-抗坏血酸的校准曲线

⁹

^{*}本报告仅供委托方进行科研、产品研发之目的使用。

^{*}本报告有关的检测数据、结果不具有向委托方之外的任何主体、社会公众的证明、验证作用。

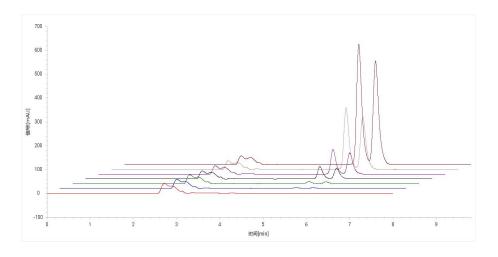


图 6 抗坏血酸系列标准工作液叠加的色谱图

6.3.2 试样溶液的测定

以乳粉作为试样,按照流程(5.1~5.2)对其进行处理,并进行加标回收实验。

依据公式(1)计算乳粉中 L(+)-抗坏血酸[或 D(-)-抗坏血酸]的含量和 L(+)-抗坏血酸总量。

$$X = \frac{(C_1 - C_0) \times V}{m \times 1000} \times F \times 100 \qquad \qquad --- \triangle \vec{\pi} \quad (1)$$

式中: X---试样中 L (+) -抗坏血酸[或 D (-) -抗坏血酸的含量、L (+) -抗坏血酸总量] 的含量,单位为毫克每百克(mg/100g);

 C_I ----样液中 L(+)-抗坏血酸[或 D(-)-抗坏血酸]的质量浓度,单位为微克每毫升(μ g/mL);

 C_{σ} ----样液空白液中 L (+) -抗坏血酸[或 D (-) -抗坏血酸]的质量浓度,单位为 微克每毫升($\mu g/mL$);

V----试样的最后定容体积,单位为毫升(mL);

m----实际检测试样质量,单位为克(g);

¹⁰

^{*}本报告仅供委托方进行科研、产品研发之目的使用。

^{*}本报告有关的检测数据、结果不具有向委托方之外的任何主体、社会公众的证明、验证作用。

1000----换算系数(由µg/mL 换算成 mg/mL 的换算因子);

F----稀释倍数(若使用 6.3 还原步骤时, 即为 2.5);

100----换算系数(由 mg/mL 换算成 mg/100g 的换算因子)。

空白溶液的色谱图、乳粉试样的色谱图、乳粉试样还原后的色谱图、乳粉试样加标的色谱图、乳粉试样加标还原后的色谱图如图 7~图 11 所示。

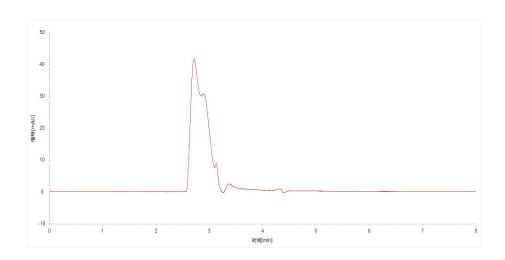


图 7 空白溶液的色谱图

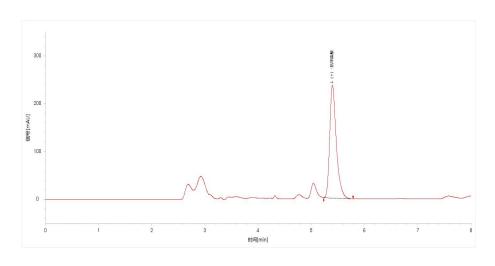


图 8 乳粉试样的色谱图

¹¹

^{*}本报告仅供委托方进行科研、产品研发之目的使用。

^{*}本报告有关的检测数据、结果不具有向委托方之外的任何主体、社会公众的证明、验证作用。

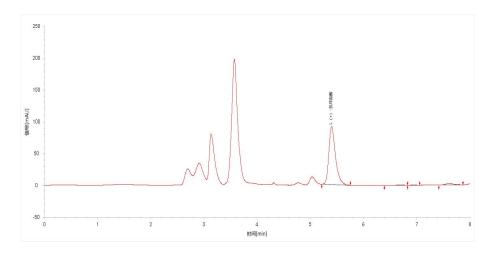


图 9 乳粉试样还原后的色谱图

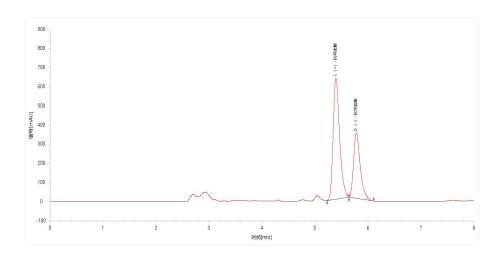


图 10 乳粉试样加标的色谱图

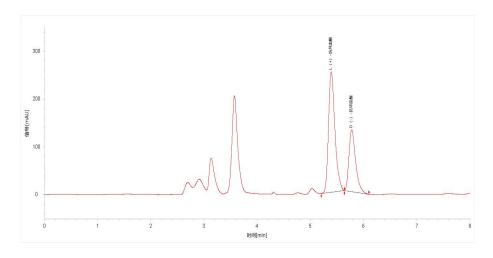
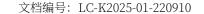



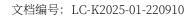
图 11 乳粉试样加标还原后的色谱图

¹²

^{*}本报告仅供委托方进行科研、产品研发之目的使用。

^{*}本报告有关的检测数据、结果不具有向委托方之外的任何主体、社会公众的证明、验证作用。

依据公式(1) 计算乳粉试样中 L(+)-抗坏血酸[或 D(-)-抗坏血酸]的含量和 L(+)-抗坏血酸总量,该乳粉试样中 L(+)-抗坏血酸的含量为61mg/100g, D(-)-抗坏血酸未检出, L(+)-抗坏血酸总量为59mg/100g,抗坏血酸的加标回收率范围为75.2%~81.2%。

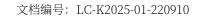

四、结论

通过对抗坏血酸的分离度、重复性、灵敏度、线性的测试以及对乳粉试样中抗坏血酸的含量及加标进行测定,实验结果表明: L(+)-抗坏血酸的理论塔板数为 10816, D(-)-抗坏血酸的理论塔板数为 11070, L(+)-抗坏血酸和 D(-)-抗坏血酸的分离度为 1.83,可实现良好的分离;重复性测试中,抗坏血酸混合标准溶液连续进样 7 针,L(+)-抗坏血酸保留时间的 RSD 为 0.203%,峰面积的 RSD 为 0.501%; D(-)-抗坏血酸保留时间的 RSD 为 0.203%,峰面积的 RSD 为 0.501%; D(-)-抗坏血酸保留时间的 RSD 为 0.222%,峰面积的 RSD 为 0.300%,均具有良好的定性定量重复性; L(+)-抗坏血酸的仪器检出限为 0.015µg/mL,仪器定量限为 0.049µg/mL;D(-)-抗坏血酸的仪器检出限为 0.017µg/mL,仪器定量限为 0.056µg/mL;L(+)-抗坏血酸和 D(-)-抗坏血酸在测定浓度范围内均呈现良好的线性关系,确定系数 R²均在 0.999 以上;对乳粉试样进行测定,L(+)-抗坏血酸的含量为 0.610mg/g,D(-)-抗坏血酸未检出,L(+)-抗坏血酸总量为 59mg/100g,抗坏血酸的加标回收率范围为 75.2%~81.2%。因此,Wooking K2025高效液相色谱仪满足《GB 5009.86-2016 食品安全国家标准 食品中抗坏血酸的测定(第一法)》乳粉中抗坏血酸含量测定的需求。

¹³

^{*}本报告仅供委托方进行科研、产品研发之目的使用。

^{*}本报告有关的检测数据、结果不具有向委托方之外的任何主体、社会公众的证明、验证作用。


附 1: 仪器配置清单

序号	单元
K2025 二元	高压梯度系统
A)	Pump Unit 泵单元
1	62MPa 二元高压输液泵(内置溶剂托盘)
2	流动相瓶 (肖特瓶, 1L)
3	脱气机
4	四通道溶剂切换阀
5	自动在线清洗系统
В)	Sample Injector 进样器
1	自动进样器
2	样品瓶(2mL,含瓶盖)
3	脱气组件
4	100μL 定量环
C)	Column Oven 柱温箱
1	色谱柱恒温箱(室温以下 10℃至 85℃)
2	色谱柱: Kromasil 100-5- C ₁₈ 4.6×250mm, 5μm
D)	Detector 检测器
1	紫外-可见光检测器
E)	Workstation 工作站
1	Wookinglab (中文版)

¹⁴

^{*}本报告仅供委托方进行科研、产品研发之目的使用。

^{*}本报告有关的检测数据、结果不具有向委托方之外的任何主体、社会公众的证明、验证作用。

附 2: 悟空 Wooking K2025 高效液相色谱仪(可靠、精准、友好、合规)

报告人: 张帆

联系方式: 15120069384

¹⁵

^{*}本报告仅供委托方进行科研、产品研发之目的使用。