

膳食纤维测定仪定测定大豆乳脂中的膳食纤维含量

一、前言

大豆乳脂是大豆经粉碎、糊化后制成的一种食品原料,在保留大豆中营养成分的同时具有更好的吸收性,可作为素肉等食品的原料或添加成分。本方案依照国标《GB 5009.88 食品安全国家标准 食品中膳食纤维的测定》,使用膳食纤维测定仪对大豆乳脂进行测定。

二、仪器

DF06 膳食纤维测定仪、 K1100 全自动凯氏定氮仪、马弗炉、分析天平等

三、实验过程

3.1、样品预处理

- 3.1.1、将一份(一罐、一瓶等)或至少 50g 样品完整的转移至一个或数个表面皿中,记录表面皿的 空重和加入样品后的总重,总重减去空重后可得到脱水前的样品质量。
- 3.1.2、将盛有样品的表面皿放入真空烘箱中,设置真空度为-0.06MPa、温度为 70℃,至少烘干 16h至恒重。
 - 3.1.3、将恒重后的样品放入干燥箱冷却30分钟,然后称重,减去表面皿空重得到脱水后的质量。
 - 3.1.4、将脱水后的样品用样品勺充分转移至粉碎机中进行初步粉碎。
 - 3.1.5、将粉碎后的样品充分收集并称重,得到脱脂前的质量。
- 3.1.6、将样品转移至滤纸筒中,采用手工法或仪器法进行索氏抽提脱脂,仪器法建议参数为: 抽提温度 65℃、沸程 30℃~60℃石油醚添加量 100ml、抽提时间 270 分钟,并记录抽提出的脂肪质量,用脱脂前的样品质量减去抽提出的脂肪质量,得到脱脂后的样品质量。

3.2、仪器准备

3.2.1、将滤膜编号,于 105°C烘箱中烘干至恒重并称重为 M_G 后,安装于过滤漏斗中,并安装至仪器相应位置处。

3.2.2、移取 350µl 的热稳定淀粉酶溶液,溶于盛有 50mL 的 MES-TRIS 缓冲液的酶瓶中;移取 3.5mL 的 10mg/mL 蛋白酶溶液,溶于盛有 47mL 的 MES-TRIS 缓冲液的酶瓶中;移取 700µl 的葡萄糖苷酶溶液,溶解于盛有 50mL 的 MES-TRIS 缓冲液的酶瓶中,然后将酶瓶安装至仪器相应位置处。3.2.3、将酶解袋装于仪器相应位置处。

3.3、总膳食纤维测定

准确称取经处理的样品 1.0g(精确至 0.1mg)左右,记为 M,并转移置酶解袋中。设定酶解程序如下:

酶解	时间	温度
淀粉酶酶解	40min	95°C
蛋白酶酶解	90min	60°C
葡萄糖苷酶酶解	30min	60°C

在葡萄糖苷酶酶解开始前,用 3mol/L 的醋酸溶液调节酶解液 PH(60℃下)至 4.5±0.2(或可先添加 5mL 的 3mol/L 醋酸溶液后使用 1mol/L 的氢氧化钠溶液调节至该 PH 值)。设置沉淀及洗涤参数如下:

78%酒精沉淀添加量	260mL
沉淀时间	60min
抽滤时间	3600s
78%酒精冲洗用量	15mL
95%酒精冲洗用量	15mL

抽滤完成后,将附有残渣的滤纸取出,放置于 105℃烘箱中烘干至恒重并称重为 M_{GR}。

3.4、不可溶性膳食纤维及可溶性膳食纤维测定

样品预处理、称样量及酶解的参数与与总膳食纤维测定方法相同,酶解结束后的洗涤参数设置如下:

抽滤时间	360s
洗涤热水用量	15mL

抽滤完成后,将附有残渣的滤纸取出,放置于 105℃烘箱中烘干至恒重并称重为 M_{GR}。将洗涤后的滤液收集在布氏漏斗下方的锥形瓶中,设置沉淀及洗涤参数如下:

78%酒精沉淀添加量	396mL
沉淀时间	60min
抽滤时间	3600s
78%酒精冲洗用量	15mL
95%酒精冲洗用量	15mL

沉淀完成后,在仪器上换装另一套装有恒重好的滤膜的漏斗及烧瓶,将沉淀好的溶液摇匀并倒入新的漏斗中抽滤。抽滤完成后,将附有残渣的滤纸取出,放置于 105° C烘箱中烘干至恒重并称重为 M_{GR} 。 3.5、计算

每两份残渣按照国标 GB 5009.5,一份计算蛋白质质量 M_p ;另一份置于马弗炉中,于 550°C下灰化 3h 测定灰分,计算灰分质量 M_{A°

试剂空白按下公式计算:

$$\mathbf{M}_{B} = \overline{\mathbf{M}_{BR}} - \mathbf{M}_{BP} - \mathbf{M}_{BA}$$

M_B: 试剂空白质量(g)

M_{BR}: 试剂空白残渣质量(g)

M_{BP}: 试剂空白残渣中蛋白质质量(g)

M_{BA}: 试剂空白残渣中灰分质量(g)

试样中膳食纤维的含量按下公式计算:

$$X = \frac{\overline{(M_{GR} - M_G)} - M_P - M_A - M_B}{\overline{M} \times f} \times 100$$

$$f = \frac{M_C}{M_D}$$

M_{GR}: 试样残渣及处理后滤膜质量(g)

M_G: 处理后滤膜质量(g)

X: 试样中膳食纤维含量(%)

M_p: 试样残渣中蛋白质质量(g)

M_A: 试样残渣中灰分质量(g)

M_B: 试剂空白质量(g)

M: 试样取样量 (g)

f: 试样因脱糖脱脂导致质量变化的校正因子

M_C: 试样脱糖脱脂前质量(g)

M_D: 试样脱糖脱脂后质量(g)

四、结果、讨论与注意事项

4.1、实验结果

实验选取的大豆乳脂样品经酶解、抽滤、烘干恒重、测定蛋白和灰分后,得到实验结果如下表所示:

不可溶性膳食纤维(IDF)含量如下表:

样品	损失因子	称样量/g	残渣/g	残渣蛋白质/g	残渣灰分/g	IDF 含量/%	均值/%
		1.0041	0.3539	0.0335		(254	
		1.0597	0.3611		0.0211	6.354	
大豆乳脂	4.62	1.0423	0.3529	0.0296		(410	6.386
		1.0548	0.3719		0.0219	6.419	
		0.0000	0.0025	0.0017			

	0.0000	0.0022	0.0008	

可溶性膳食纤维(SDF)含量如下表:

样品	损失因子	称样量/g	残渣/g	残渣蛋白质/g	残渣灰分/g	SDF 含量/%	均值/%
		1.0041	0.1653	0.0269		2.694	2.680
		1.0597	0.1725		0.0094		
大豆乳脂	4.62	1.0423	0.1669	0.0263		2.667	
人豆孔朋	4.02	1.0548	0.1697		0.0087		
		0.0000	0.0069	0.0034			
		0.0000	0.0101		0.0010		

总性膳食纤维(TDF)含量如下表:

样品	不可溶性膳食纤维/%	可溶性膳食纤维/%	总膳食纤维/%
大豆乳脂	6.386	2.680	9.066

其中, TDF=IDF+SDF。

4.2、注意事项

4.3.1、烘干时,应使大豆乳脂尽量平铺在表面皿上,使其厚度尽量小,以加快烘干速率。烘干结束后, 应首先冷却后称重,再转移样品。

4.3.2、烘干后, 需粉碎样品, 以保证脱脂的充分性。

参考文献

[1] GB 5009.88 食品安全国家标准 食品中膳食纤维的测定[s].