

方案编号: F-101-202412

纤维测定仪、纤维分析仪测定干草料中的粗纤维含量

一、前言

干草料是畜牧业中重要的饲料资源,其营养成分直接影响牲畜的健康和生产性能。粗纤维是干草料的 关键成分之一,对牲畜的消化系统功能和整体健康有重要作用。测定干草料中粗纤维含量,不仅有助于评 估其营养价值,还为饲养管理和饲料配方优化提供了科学依据。

首先,粗纤维在牲畜的饲养过程中起着促进消化和维持胃肠健康的作用。它能够刺激反刍动物的瘤胃发酵,提高消化效率,并帮助维持胃肠道微生物群的平衡。通过测定干草料中粗纤维含量,可以科学评估其适口性和消化率,确保饲料符合牲畜的实际需求。

其次,不同种类的牲畜对粗纤维的需求量各不相同。测定粗纤维含量有助于优化饲料配比,避免粗纤维过多导致能量摄入不足或过少引发消化问题,从而提升饲养效率。

此外,粗纤维含量的测定还能反映干草料的品质,为生产者选择优质草料、提高畜牧产品质量提供科学指导。

综上所述,测定干草料中粗纤维含量对畜牧业的科学饲养、饲料管理及生产效率提升具有重要意义, 有助于推动畜牧业的可持续发展。

本方案参照《GB/T 6434-2022 饲料中粗纤维的含量测定》,对干草料样品中的粗纤维含量进行测定, 并将 F800 纤维测定仪(下称 F800)与 F2000 全自动纤维分析仪(下称 F2000)测得的数据进行对照。

二、仪器与试剂

2.1、仪器

F2000 全自动纤维分析仪、F800 纤维测定仪,马弗炉,分析天平等

2.2、试剂

0.13mo1/L 硫酸溶液, 0.23mo1/L 氢氧化钾溶液, 石油醚 (沸程 30%~60%), 丙酮 (分析纯), 三级水, 正辛醇 (分析纯)。

三、实验方法

3.1、粗纤维的测定——F2000

3.1.1、准备滤袋

用油性笔在滤袋上编号,然后在烘箱中于105°C±5°C下烘干1小时,冷却后称重,记为m,。

3.1.2、称样

用称过重量的滤袋称取样品 1.0g (精确至 0.1mg) 并记为 m, 称样体积以滤袋的一半为准。轻轻磕碰

滤袋底部, 使样品尽量集中在滤袋的底部。

设置封口机为 4 档,在距离滤袋开口沿 5mm 处封口。封口时应用力压实封口机,并在加热结束后继续按压 3 秒钟,然后小心取下滤袋,封口后的滤袋如上图。

3.1.3、脱脂

将滤袋转移至烧杯中,加入石油醚至浸没滤袋,小心搅拌两次并浸泡五分钟,然后倒去石油醚。重复该过程两次,然后将滤袋在通风橱中风干 20 分钟挥干残余石油醚。

3.1.4、消煮

检查试剂余量(两种洗涤剂至少各 2.5L,洗涤用水至少 10L),将样品摆放到滤袋架上并装入纤维分析仪中,如下图。

选择粗纤维方法并运行(酸碱消煮时间各55分钟,洗涤次数各4次),仪器自动进行消煮和洗涤。

3.1.5、脱脂

重复3.1.3步骤,但使用的有机试剂为丙酮

3.1.6、恒重

将滤袋放入烘箱中,于105°C±5°C下烘干4小时,冷却后称重,记为m2。

3.1.7、灰化

准备好洁净瓷坩埚并称重,记为 \mathbf{m}_n ,放入恒重后的盛有残渣的滤袋,于 550 $^{\circ}$ C下灰化 3h,待坩埚冷却后称重,记为 \mathbf{m}_k 。

3.1.8、计算

按照下公式计算 CF 的含量:

$$X = \frac{\left(m_3 - m_1 \times \frac{(m_{b3} - (m_{bk} - m_{bn}))}{m_{b1}} - (m_k - m_n)\right)}{m} \times 100\%$$

m₃: 恒重后滤袋和样品残渣的总重, g;

m₁: 滤袋空重, g;

m_k: 灰化后坩埚和灰分的总重, g;

mn: 坩埚空重, g

m_{b3}: 空白滤袋恒重后的总重, g;

m_{b1}: 空白滤袋空重, g;

m_{bk}: 空白滤袋灰化后坩埚和灰分的总重, g;

m, 空白滤袋的坩埚空重, g

X: 样品中的粗纤维含量,%。

3.2、粗纤维的测定——坩埚法

3.2.1、称样

精确称取样品约 1g (精确至 0.1mg), 放入盛有约 2g 经处理的硅藻土的坩埚中。

3.2.2、脱脂

将坩埚安装至纤维测定仪的对应位置,拉下固定拉手。在仪器顶端进液口倒入 15mL 石油醚,浸泡 5分钟后在操作界面按下抽滤,将石油醚排出。重复该步骤三次,然后推上固定拉手,用坩埚夹拿下坩埚并在通风橱中风干。

3.2.3、试剂准备

检查试剂桶中的试剂类型及其是否充裕,可打开预热。

3.2.4、消煮

将风干后的坩埚重新安装至仪器对应位置,点击加液按钮添加酸/碱试剂至中间刻度线,然后手动加入约 0.2mL 正辛醇,设定加热时间并点击加热,将功率按钮旋到最大,并将反射板插入对应位置。待消煮管中微沸后,将功率旋钮调节至三分之一处,保持微沸状态至保温结束。沸腾下样品状态如下图。

3.2.5、洗涤

点击抽滤按钮将酸/碱试剂抽干,然后点击加水按钮,旋转每个通道的加水阀加水至中间刻度线,然后抽干,重复该步骤至少4次或直至将样品洗涤至中性(使用 pH 试纸检测样品表面)。

3.2.6、脱脂

在仪器顶端进液口倒入 15mL 丙酮, 浸泡 5 分钟后在操作界面按下抽滤,将丙酮排出。重复盖步骤三次,然后推上固定拉手,用坩埚夹拿下坩埚并在通风橱中风干。

3.2.7、干燥

将坩埚放入鼓风干燥箱内,以105±5℃烘干至恒重,并称重。

3.2.8、灰化

将恒重后的坩埚放入马弗炉,于 550℃下灰化 3h,待坩埚冷却后称重。

3.2.9、计算结果

按照下式计算样品中的粗纤维含量:

$$X = \frac{m_2 - m_1}{m} \times 100\%$$

- m₂: 坩埚+硅藻土+样品残渣恒重后的重量, g;
- m_i: 坩埚+硅藻土+样品残渣灰化后的重量, g;
- m: 样品的称样量, g。

四、结果与讨论

经过 F800、F2000 的测试,得到干草料样品的测试结果如下表:

F800 纤维测定仪												
样品	称样量/g	坩埚+残渣/g	坩埚+硅藻土/g	粗纤维含量/%	均值/%	精密度/%						
干草料	0. 5144	30. 4093	30. 2272	30. 861	30, 028	5. 55						
	0.5150	32. 4442	32. 2705	29. 194	00.020							
空白	0.0000	32. 1066	32. 0824		1							
	0.0000	31. 5046	31. 4821									

F2000 全自动纤维分析仪													
 样品	称样量/g	滤袋/g	滤袋+残渣/g	滤袋+坩埚/g	灰分+坩埚/g	粗纤维含量/%	均值/%	精密度/%					
干草料	0. 2515	0. 2622	0. 3343	52. 1474	51. 8116	29.026	29. 142	0.80					
	0. 2516	0. 2561	0. 3288	46. 5702	46. 2399	29. 259							
空白	0.0000	0. 2624	0. 2604	50. 1660	49. 9037								
	0.0000	0. 2626	0. 2609	48. 6871	48. 4232								

结果显示,F800 的测试结果为 30.028%,精密度符合参考标准的要求;F2000 的测试结果为 29.142%,精密度也符合参考标准的要求。方法间的精密度为 2.99%,同样符合参考标准的要求,说明两种方法的测试结果一致。

六、参考

[1] GB 5009.6-2016 食品安全国家标准 食品中脂肪的测定 [s]

- 7 -